Abstract

Profiling the nucleic acid-binding proteins (NABPs) during aging process is critical to elucidate its roles in biological systems as well as transcriptional and translational regulation. Here, we developed a comprehensive strategy to survey the NABPs of mouse immune organs by using single cell preparation and selective capture technology-based proteomics. Our approach provided a global view of tissue NABPs from different organs under normal physiological conditions with extraction specificity of 70 to 90%. Through quantitative proteomics analysis of mouse spleen and thymus at 1, 4, 12, 24, 48, and 72weeks, we investigated the molecular features of aging-related NABPs. A total of 2674 proteins were quantified in all six stages, demonstrating distinct and time-specific expression pattern of NABPs. Thymus and spleen exhibited unique aging signatures, and differential proteins and pathways were enriched across the mouse lifespan. Three core modules and 16 hub proteins associated with aging were revealed through weighted gene correlation network analysis. Significant candidates were screened for immunoassay verification, and six hub proteins were confirmed. The integrated strategy pertains the capability to decipher the dynamic functions of NABPs in aging physiology and benefit further mechanism research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.