Abstract
IntroductionAtrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and it significantly increases the risk of cardiovascular complications and morbidity, even with appropriate treatment. Tissue remodeling has been a significant topic, while its systematic transcriptional signature remains unclear in AF. ObjectivesOur study aims to systematically investigate the molecular characteristics of AF at the cellular-level. MethodsWe conducted single-nuclei RNA-sequencig (snRNA-seq) analysis using nuclei isolated from the left atrial appendage (LAA) of AF patients and sinus rhythm. Pathological staining was performed to validate the key findings of snRNA-seq. ResultsA total of 30 cell subtypes were identified among 80, 592 nuclei. Within the LAA of AF, we observed a specific subtype of dedifferentiated cardiomyocytes (CMs) characterized by reduced expression of cardiac contractile proteins (TTN and TRDN) and heightened expression of extracellular-matrix related genes (COL1A2 and FBN1). Transcription factor prediction analysis revealed that gene expression patterns in dedifferentiated CMs were primarily regulated by CEBPG and GISLI. Additionally, we identified a distinct subtype of endothelial progenitor cells (EPCs) demonstrating elevated expression of PROM1 and KDR, a population decreased within the LAA of AF. Epicardial adipocytes disclosed a reduced release of the anti-inflammatory and anti-fibrotic factor PRG4, and an augmented secretion of VEGF signals targeting CMs. Additionally, we noted accumulation of M2-like macrophages and CD8+ T cells with high pro-inflammatory score in LAA of AF. Furthermore, the analysis of intercellular communication revealed specific pathways related to AF, such as inflammation, extracellular matrix, and vascular remodeling signals. ConclusionsThis study has discovered the presence of dedifferentiated CMs, a decrease in endothelial progenitor cells, a shift in the secretion profile of adipocytes, and an amplified inflammatory response in AF. These findings could offer crucial insights for future research on AF and serve as valuable references for investigating novel therapeutic approaches for AF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.