Abstract

Magnesium stearate (MgSt) is the most commonly used excipient for oral solid dosage forms, yet there is significant commercial physicochemical variability that can lead to variable performance of critical product attributes. Differential scanning calorimetry (DSC) is often used as a quality control tool to characterize MgSt, but little data is available regarding the physicochemical relevance for the DSC thermograms. The main aim of this study was to decipher MgSt’s complex thermotropic behavior using DSC, thermogravimetric analysis, capillary melting point, polarized hot-stage microscopy, and temperature dependent small-angle X-ray scattering (SAXS) and assign physicochemical relevance to the DSC thermograms. Several DSC thermal transitions are irreversible after the first heating cycle of a heat-cool-heat-cool-heat cycle. Interestingly, after the first heat cycle, the complex cool-heat-cool-heat DSC thermograms were highly reproducible and exhibited 6 reversible exothermic-endothermic conjugate pairs. SAXS identified 5 distinct mesophases at different temperatures with Phase C′ persisting to 250 °C. MgSt maintained molecular ordering beyond 276 °C and did not undergo a simple melting phenomena reported elsewhere. This research serves as a starting point to design heat-treatment strategies to create more uniform MgSt starting material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.