Abstract

High-capacity solid-state batteries are promising future products for large-scale energy storage and conversion. Sodium fast ion conductors including glasses and glass ceramics are unparalleled materials for these applications. Rational design and tuning of advanced sodium sulfide electrolytes need a deep insight into the atomic structure and dynamics in relation with ion-transport properties. Using pulsed neutron diffraction and Raman spectroscopy supported by first-principles simulations, we show that preferential diffusion pathways in vitreous sodium and silver sulfides are related to isolated sulfur Siso, that is, the sulfur species surrounded exclusively by mobile cations with a typical stoichiometry of M/Siso ≈ 2. The Siso/Stot fraction appears to be a reliable descriptor of fast ion transport in glassy sulfide systems over a wide range of ionic conductivities and cation diffusivities. The Siso fraction increases with mobile cation content x, tetrahedral coordination of the network former and, in case of thiogermanate systems, with germanium disulfide metastability and partial disproportionation, GeS2 → GeS + S, leading to the formation of additional sulfur, transforming into Siso. A research strategy enabling to achieve extended and interconnected pathways based on isolated sulfur would lead to glassy electrolytes with superior ionic diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call