Abstract

Measurements of the plasma parameters of coronal mass ejections (CMEs), particularly the magnetic field and nonthermal electron population entrained in the CME plasma, are crucial to understand their propagation, evolution, and geo-effectiveness. Spectral modeling of gyrosynchrotron (GS) emission from CME plasma has been regarded as one of the most promising remote-sensing techniques for estimating spatially resolved CME plasma parameters. Imaging the very low flux density CME GS emission in close proximity to the Sun with orders of magnitude higher flux density has, however, proven to be rather challenging. This challenge has only recently been met using the high dynamic range imaging capability of the Murchison Widefield Array (MWA). Although routine detection of GS is now within reach, the challenge has shifted to constraining the large number of free parameters in GS models, a few of which are degenerate, using the limited number of spectral points at which the observations are typically available. These degeneracies can be broken using polarimetric imaging. For the first time, we demonstrate this using our recently developed capability of high-fidelity polarimetric imaging on the data from the MWA. We show that spectropolarimetric imaging, even when only sensitive upper limits on circularly polarization flux density are available, is not only able to break the degeneracies but also yields tighter constraints on the plasma parameters of key interest than possible with total intensity spectroscopic imaging alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.