Abstract

Cancer remains a significant global health concern, with millions of deaths attributed to it annually. Environmental pollutants play a pivotal role in cancer etiology and contribute to the growing prevalence of this disease. The carcinogenic assessment of these pollutants is crucial for chemical health evaluation and environmental risk assessments. Traditional experimental methods are expensive and time-consuming, prompting the development of alternative approaches such as in silico methods. In this regard, deep learning (DL) has shown potential but lacks optimal performance and interpretability. This study introduces an interpretable DL model called CarcGC for chemical carcinogenicity prediction, utilizing a graph convolutional neural network (GCN) that employs molecular structural graphs as inputs. Compared to existing models, CarcGC demonstrated enhanced performance, with the area under the receiver operating characteristic curve (AUCROC) reaching 0.808 on the test set. Due to air pollution is closely related to the incidence of lung cancers, we applied the CarcGC to predict the potential carcinogenicity of chemicals listed in the United States Environmental Protection Agency's Hazardous Air Pollutants (HAPs) inventory, offering a foundation for environmental carcinogenicity screening. This study highlights the potential of artificially intelligent methods in carcinogenicity prediction and underscores the value of CarcGC interpretability in revealing the structural basis and molecular mechanisms underlying chemical carcinogenicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call