Abstract
Owing to their high gravimetric energy, low cost, and wide availability of required materials, Li–S batteries (LSBs) are considered as a promising next-generation energy storage technology. However, the sluggish redox kinetics and dissolution of lithium polysulfides during the electrochemical reactions are key problems to overcome. The improvement of the long-term cycle life of LSBs solely by converting insoluble solid-state electrolyte-soluble lithium polysulfides (LiPSs) (Li2Sx, where 1 ≤ x ≤ 2, 836 mAh g–1) is an ingenious method, but solid-state LiPS conversion has sluggish redox kinetics owing to the intrinsically low electrical conductivity of solid-state LiPS compounds (Li2S and Li2S2). This study applied Te doping to S cathodes and conducted experimental and theoretical analyses on the Te-doped solid-state LiPSs to investigate the effect of Te on the redox kinetics of the solid-state LiPS conversions for high-performance LSBs. The qualitative and quantitative electrochemical characterization demonstrated that Te induced an increase in the kinetics. Furthermore, the enhanced kinetics were explained at the atomic scale by the theoretical thermodynamics and chemomechanics investigations. The design of high-performance LSBs will benefit the strong understanding of Te-doped S electrodes in solid-state conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.