Abstract

Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved luciferase reporter assay in living Saccharomyces cerevisiae yeast cells to gain insights into how osmotic and oxidative stress signals modulate gene expression in a dose-sensitive manner. Specifically, the dose-response behavior of four different natural promoters (GRE2, CTT1, SOD2, and CCP1) reveals differences in their sensitivity and dynamics in response to different salt and oxidative stimuli. Characteristic dose-response profiles were also obtained for artificial promoters driven by only one type of stress-regulated consensus element, such as the cyclic AMP-responsive element, stress response element, or AP-1 site. Oxidative and osmotic stress signals activate these elements separately and with different sensitivities through different signaling molecules. Combination of stress-activated cis elements does not, in general, enhance the absolute expression levels; however, specific combinations can increase the inducibility of the promoter in response to different stress doses. Finally, we show that the stress tolerance of the cell critically modulates the dynamics of its transcriptional response in the case of oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.