Abstract
BackgroundDisulfidptosis, a recently identified type of regulated cell death, plays critical roles in various biological processes of cancer; however, whether they can impact the prognosis of lung adenocarcinoma (LUAD) remains to be fully elucidated. We aimed to adopt this concept to develop and validate a lncRNA signature for LUAD prognostic prediction. MethodsFor this study, the TCGA-LUAD dataset was used as the training cohort, and multiple datasets from the GEO database were pooled as the validation cohort. Disulfidptosis regulated genes were obtained from published studies, and various statistical methods, including Kaplan-Meier (KM), Cox, and LASSO, were used to train our gene signature DISULncSig. We utilized KM analysis, COX analysis, receiver operating characteristic analysis, time-dependent AUC analysis, principal component analysis, nomogram predictor analysis, and functional assays in our validation process. We also compared DISULncSig with previous studies. We performed analyses to evaluate DISULncSig's immunotherapeutic ability, focusing on eight immune algorithms, TMB, and TIDE. Additionally, we investigated potential drugs that could be effective in treating patients with high-risk scores. Additionally qRT-PCR examined the expression patterns of DISULncSig lncRNAs, and the ability of DISULncSig in pan-cancer was also assessed. ResultsDISULncSig containing twelve lncRNAs was trained and showed strong predictive ability in the validation cohort. Compared with previous similar studies, DISULncSig had more prognostic ability advantages. DISULncSig was closely related to the immune status of LUAD, and its tight relationship with checkpoints KIR2DL3, IL10, IL2, CD40LG, SELP, BTLA, and CD28 may be the key to its potential immunotherapeutic ability. For the high DISULncSig score population, we found ten drug candidates, among which epothilone-b may have the most potential. The pan-cancer analysis found that DISULncSig was a risk factor in multiple cancers. Additionally, we discovered that some of the DISULncSig lncRNAs could play crucial roles in specific cancer types. ConclusionThe current study established a powerful prognostic DISULncSig signature for LUAD that was also valid for most pan-cancers. This signature could serve as a potential target for immunotherapy and might help the more efficient application of drugs to specific populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.