Abstract

Geophysical flows impacting a flexible barrier can create complex flows and solid-fluid-structure interactions, which are challenging to quantify and characterize towards a unified description. Here, we examine the common physical laws of multiphase, multiway interactions during debris flows, debris avalanches and rock avalanches against a flexible barrier system using a coupled computational fluid dynamics and discrete element (CFD-DEM) method. This model captures essential physics observed in experiments and fields. The bi-linear, positive correlations are found between peak impact load and Fr or maximum barrier deflection, with inflection points due to the transitions from trapezoid- to triangle-shaped dead zones. Our findings quantitatively elucidate how flow materials (wet versus dry) and impact dynamics (slow versus fast) control the patterns of the identified bi-linear correlations. This work offers a physics-based reference and insights for improving widely-used impact solutions for geophysical flows against flexible barriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.