Abstract

High-order interactions among components of interconnected genetic networks regulate complex functions in biological systems, but deciphering these interactions is challenging. New strategies are emerging to decode these combinatorial genetic interactions across a wide range of organisms. Here, we review advances in multiplexed and combinatorial genetic perturbation technologies and high-throughput profiling platforms that are enabling the systematic dissection of complex genetic networks. These rapidly evolving technologies are being harnessed to probe combinatorial gene functions in functional genomics studies and have the potential to advance our understanding of how genetic networks regulate sophisticated biological phenotypes, to generate novel therapeutic strategies, and to enable the engineering of complex artificial gene networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.