Abstract
The soft function in non-abelian gauge theories exponentiate, and their logarithms can be organised in terms of the collections of Feynman diagrams called Cwebs. The colour factors that appear in the logarithm are controlled by the web mixing matrices. Direct construction of the diagonal blocks of Cwebs using the new concepts of Normal ordering, basis Cweb and Fused-Web was recently carried out in [1]. In this article we establish correspondence between the boomerang webs introduced in [2] and non-boomerang Cwebs. We use this correspondence together with Uniqueness theorem and Fused web formalism introduced in [1] to obtain the diagonal blocks of four general classes of Cwebs to all orders in perturbation theory which also cover all the four loop Boomerang Cwebs connecting four Wilson lines. We also fully construct the mixing matrix of a special Cweb to all orders in perturbation theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.