Abstract

BackgroundChemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Escherichia coli utilises a single sensory pathway, but little is known about signalling pathways in species with more complex systems.ResultsTo investigate whether chemotaxis pathways in other bacteria follow the E. coli paradigm, we analysed 206 species encoding at least 1 homologue of each of the 5 core chemotaxis proteins (CheA, CheB, CheR, CheW and CheY). 61 species encode more than one of all of these 5 proteins, suggesting they have multiple chemotaxis pathways. Operon information is not available for most bacteria, so we developed a novel statistical approach to cluster che genes into putative operons. Using operon-based models, we reconstructed putative chemotaxis pathways for all 206 species. We show that cheA-cheW and cheR-cheB have strong preferences to occur in the same operon as two-gene blocks, which may reflect a functional requirement for co-transcription. However, other che genes, most notably cheY, are more dispersed on the genome. Comparison of our operons with shuffled equivalents demonstrates that specific patterns of genomic location may be a determining factor for the observed in vivo chemotaxis pathways.We then examined the chemotaxis pathways of Rhodobacter sphaeroides. Here, the PpfA protein is known to be critical for correct partitioning of proteins in the cytoplasmically-localised pathway. We found ppfA in che operons of many species, suggesting that partitioning of cytoplasmic Che protein clusters is common. We also examined the apparently non-typical chemotaxis components, CheA3, CheA4 and CheY6. We found that though variants of CheA proteins are rare, the CheY6 variant may be a common type of CheY, with a significantly disordered C-terminal region which may be functionally significant.ConclusionsWe find that many bacterial species potentially have multiple chemotaxis pathways, with grouping of che genes into operons likely to be a major factor in keeping signalling pathways distinct. Gene order is highly conserved with cheA-cheW and cheR-cheB blocks, perhaps reflecting functional linkage. CheY behaves differently to other Che proteins, both in its genomic location and its putative protein interactions, which should be considered when modelling chemotaxis pathways.

Highlights

  • Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions

  • We find that the distribution of cheY in operons is different from the other che genes and that CheY Putative Interactions’ (PIs) behaviour is different to that of other Che proteins

  • In order to ascertain if these operons may encode similar pathways to those identified in R. sphaeroides, we examined whether known non che genes are found within the operons

Read more

Summary

Introduction

Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Chemotaxis is the process by which motile bacteria move towards more favourable conditions by sensing their chemical environment. It is of significant medical interest, as many pathogenic bacteria depend on chemotaxis and motility to invade their hosts. Chemotaxis is essential for symbiotic associations of bacteria, for example the colonization of wheat roots by the nitrogen fixing bacterium Azospirillum brasilense [4]. A detailed, quantitative understanding of chemotaxis pathways would pave the way for the study of other, more complex signalling systems

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call