Abstract
Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups. Because the Pt-Pt distance change is slow with respect to excited-state electron transfer, it can affect the rate of electron transfer. These results have potential impacts on controlling electron transfer rates via structural alterations to the electron donor group, tuning the charge transfer driving force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.