Abstract

Building Information Modeling (BIM) has catalyzed transformative shifts across various industries, which has sparked broader research interests in the BIM lifecycle. However, studies that specify the stated requirements for different technologies and methodologies from the perspective of the BIM lifecycle and analyze research hotspots and future research trends at each stage are scarce. Employing scientometric theories and methods, this study conducts an in-depth comparative analysis of BIM lifecycle stages. The analysis encompasses several aspects like annual research output and knowledge flows, in the aim of unveiling disparities in the technological requirements, defining research boundaries, and illuminating lifecycle research trends. Findings indicate an ongoing surge in research across all BIM lifecycle stages with technologies like digital twins and artificial intelligence becoming prevailing trends. The cooperative design of BIM components, virtual-real world coordination, interactions among buildings, individuals, and environments, as well as the in-depth integration of BIM with the multifaceted fields of urban management have emerged as focal points in the planning, construction, management, and maintenance of BIM, respectively. Future BIM lifecycle research will necessitate interdisciplinary collaboration, emphasizing technological integration, common data environment (CDE) information sharing, open-source BIM/historic building information modeling (HBIM) system, and impactful exploration in areas like urban construction and historical preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call