Abstract

This first-attempt study revealed optimal strategy to supplement extracts of polyphenolics-abundant medicinal herbs and Camellia tea as electron shuttles (ESs) for stimulating bioenergy generation in microbial fuel cells (MFCs). Apparently, Camellia sinensis (L.) Kuntze and Syzygium aromaticum were promising electroactive ESs. Moderate temperature (ca. 65 °C) and slightly alkali pHs (∼10) were electrochemically feasible conditions for herbal extraction. Optimal contents of polyphenolics-rich herbs and tea extracts with maximal electrochemical activities could be stably obtained. Power density of MFC supplemented with Camellia green tea extract could significantly increase ca. 176%, suggesting that green tea extract would be the most appropriate ESs. Total phenolic contents and electron shuttling capabilities were all electrochemically associated. In addition, chemical structure strongly affected whether antioxidant activities of polyphenolics-abundant herbal extracts could be reversibly switched to be electron-shuttling capabilities (e.g., substitution patterns). Hydroxyl substiutuents ortho or para to each other were very likely promising for electron-shuttling, but not for meta substituents. Moreover, bioelectrochemical treatment upon medicinal herbal extracts (e.g., cyclic electron-donating and withdrawing processes) might be inevitably needed for toxicity attenuation to fully express bioenergy-shuttling activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.