Abstract

Transition metal dichalcogenide (TMD)/graphene (Gr) heterostructures constitute a key component for two-dimensional devices. The operation of TMD/Gr devices relies on interfacial charge/energy transfer processes, which remains unclear and challenging to unravel. Fortunately, the coupled spin and valley index in TMDs adds a new degree of freedom to the charges and, thus, another dimension to spectroscopy. Here, by helicity-resolved ultrafast spectroscopy, we find that photoexcitation in TMDs transfers to graphene by asynchronous charge transfer, with one type of charge transferring in the order of femtoseconds and the other in picoseconds. The rate correlates well with energy offset between TMD and graphene, regardless of compositions and charge species. Spin-polarized hole injection or long-lived polarized hole can be achieved with deliberately designed heterostructures. This study shows helicity-resolved ultrafast spectroscopy as a powerful and facile approach to reveal the fundamental and complex charge/spin dynamics in TMD-based heterostructures, paving the way toward valleytronic and optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call