Abstract

Antibiotic resistome, which encompasses all types of antibiotic resistance genes (ARGs) in a given environment, has received increasing attention in research on different wastewater treatment processes. However, the variation in antibiotic resistome during the transition from the full nitrification–denitrification to the shortcut nitrification–denitrification process remains unclear. In this study, a total of 269 targeted gene subtypes were identified, along with 108 genes were consistently present in all samples. The introduction of mixed antibioticsrapidly increased the abundance of corresponding and non-corresponding ARGs, as well as that of mobile genetic elements.The variations in of the antibiotic resistome were primarily driven by dissolved oxygen and nitrite accumulation rate. Moreover, 34 bacterial genera were identified as potential ARG hosts, with most denitrifiers considered as potential antibiotic-resistant bacteria, including Branchymonas, Rhodobacter, and Thauera. This study provides a method for controlling antibiotic resistance by regulating the changes in environmental variables and bacterial communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call