Abstract

In the case of vanishing cosmological constant, Demia\'nski has shown that the Janis-Newman algorithm can be generalized in order to include a NUT charge and another parameter $c$, in addition to the angular momentum. Moreover it was proved that only a NUT charge can be added for non-vanishing cosmological constant. However despite the fact that the form of the coordinate transformations was obtained, it was not explained how to perform the complexification on the metric function, and the procedure does not follow directly from the usual Janis-Newman rules. The goal of our paper is threefold: explain the hidden assumptions of Demia\'nski's analysis, generalize the computations to topological horizons (spherical and hyperbolic) and to charged solutions, and explain how to perform the complexification of the function. In particular we present a new solution which is an extension of the Demia\'nski metric to hyperbolic horizons. These different results open the door to applications in (gauged) supergravity since they allow for a systematic application of the Demia\'nski-Janis-Newman algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.