Abstract

Rapid discovery of target information for protein-protein interactions (PPIs) is significant in drug design, diagnostics, vaccine development, antibody therapy, etc. Peptide microarray is an ideal tool for revealing epitope information of PPIs. In this work, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) and the host cell receptor angiotensin-converting enzyme 2 (ACE2) were introduced as a model to study the epitope information of RBD-specific binding to ACE2 via a combination of theoretical calculations and experimental validation. Through dock and molecular dynamics simulations, it was found that among the 22 peptide fragments that consist of RBD, #14 (YNYLYRLFRKSNLKP) has the highest binding strength. Subsequently, the experiments of peptide microarray constructed based on plasmonic materials chip also confirmed the theoretical calculation data. Compared to other methods, such as phage display technology and surface plasmon resonance (SPR), this method is rapid and cost-effective, providing insights into the investigation of pathogen invasion processes and the timely development of peptide drugs and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call