Abstract

Due to the enhancement of circuit integration level, and the accelerating of working frequency of traditional computer, it requires components dimension must be constantly decreased. So encapsulation, etching and other problems of chip are becoming more and more difficult to solve, which causes its performance also become unstable. In order to overcome this problem, DNA computing as a new kind of molecular computing mode, with its high parallelism, huge amounts of storage capacity, low energy consumption advantages has received extensive attention. Being the same with traditional electronic computer, DNA computer is composed by arithmetic operations such as addition, subtraction, multiplication and dividing and basic logic units such as AND, OR, NON gate. This paper puts forward a new method to realize decimal integer multiplication based on molecular beacons. The algorithm firstly converts decimal integer to binary number, and then resolves the multiplication process into multiplication of current bit and addition of intermediate result after shifting two steps. Molecular beacon is used as multiplying unit, coding sequence is used as multiplier in this method. Based on the working principle of molecular beacon, multiplication operation of two one-bit binary is simulated. And by recording fluorescence status of molecular beacon to observe intermediate result and carry-bit situation, the final result can be obtained through addition after shifting. Examples prove that this method can realize decimal integer multiplication rapidly and accurately. This method is similar to multiplication system in traditional electronic computer, and it provides a simple, easier operation method for DNA computer to realize arithmetic operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call