Abstract

Multipotent mesenchymal stem cells are derived from the dental pulps of permanent teeth and exfoliated deciduous teeth, and are known to induce bone and dentin generation. However, the role of deciduous dental pulp stem cells (DDPSCs) in physiologic root resorption remains unclear. In this study, dental pulp stem cells (DPSCs) in permanent teeth (P) were retrieved and compared to DDPSCs from deciduous incisors at different root resorption stages: stable (S), middle (M), and final (F). Decalcified teeth sections showed that osteoclasts and resorption lacunae were most prevalent in the M resorption stage. DDPSC proliferation rate was also highest in the M stage. DDPSCs in the F stage produced more calcified nodules than those in the S or M stages. Alkaline phosphatase (ALP) expression was highest in the F stage, indicating that DDPSCs promote mineralization. In addition, the ratio of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) expression was significantly higher in the M stage, indicating that DDPSCs promote resorption. Dickkopf 1 (Dkk1) expression was remarkably higher in the F and P groups, suggesting that the Wnt pathway is inhibited during the resorption process. Interestingly, despite the fact that Wnt3a down-regulated OPG in osteogenic induction medium and up-regulated RANKL in medium with 1,25-dihydroxy vitamin D3 (VD(3) ), the RANKL/OPG ratio was reduced only with VD(3) . Collectively, our data indicate that DDPSCs influence osteoclastogenesis during the physiologic root resorption process, and that the canonical Wnt pathway can change the RANKL/OPG expression ratio in DDPSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call