Abstract

BackgroundDecidualization of the human endometrium, which involves a dramatic morphological and functional differentiation of human endometrial stromal cells (ESCs), is essential for the establishment of a successful pregnancy. Decidualization results from a complex interplay of transcription factors, morphogens, cytokines, cell cycle regulators, and signaling pathways.MethodsBased on a literature review, the regulation of, and the molecular mechanisms involved in, the decidualization of the endometrium are described.Main findingsProgesterone, together with proteins that are regulated by progesterone and/or cyclic adenosine monophosphate, including homeobox A10, forkhead box O1, signal transducers and activators of transcription, and heart and neural crest derivatives expressed transcript 2, forms a critical network for ESC decidualization and is a prerequisite to successful implantation. Decidualized ESCs contribute to the microenvironment at the feto–maternal interface and its direct or indirect influence on extracellular matrix remodeling, regulation of the local immune response, anti‐oxidative stress, and angiogenesis (vascular maturation). Impairment of this process is associated with a variety of pregnancy disorders, including infertility, recurrent miscarriages, and uteroplacental disorders.ConclusionA deeper understanding of the process of decidualization is expected to provide new insights into the fields of reproductive biology and reproductive medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.