Abstract
The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose–response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.