Abstract
The Topological Subgraph Containment (TSC) Problem is to decide, for two given graphs G and H, whether H is a topological subgraph of G. It is known that the TSC Problem is NP-complete when H is part of the input, that it can be solved in polynomial time when H is fixed, and that it is fixed-parameter tractable by the order of H.Motivated by the great significance of grids in graph theory and algorithms due to the Grid-Minor Theorem by Robertson and Seymour, we investigate the computational complexity of the Grid TSC Problem in planar graphs. More precisely, we study the following decision problem: given a positive integer k and a planar graph G, is the k×k grid a topological subgraph of G? We prove that this problem is NP-complete, even when restricted to planar graphs of maximum degree six, via a novel reduction from the Planar Monotone 3-SAT Problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.