Abstract
Several strands of research have aimed to bridge the gap between artificial intelligence (AI) and human decision-makers in AI-assisted decision-making, where humans are the consumers of AI model predictions and the ultimate decision-makers in high-stakes applications. However, people's perception and understanding are often distorted by their cognitive biases, such as confirmation bias, anchoring bias, availability bias, to name a few. In this work, we use knowledge from the field of cognitive science to account for cognitive biases in the human-AI collaborative decision-making setting, and mitigate their negative effects on collaborative performance. To this end, we mathematically model cognitive biases and provide a general framework through which researchers and practitioners can understand the interplay between cognitive biases and human-AI accuracy. We then focus specifically on anchoring bias, a bias commonly encountered in human-AI collaboration. We implement a time-based de-anchoring strategy and conduct our first user experiment that validates its effectiveness in human-AI collaborative decision-making. With this result, we design a time allocation strategy for a resource-constrained setting that achieves optimal human-AI collaboration under some assumptions. We, then, conduct a second user experiment which shows that our time allocation strategy with explanation can effectively de-anchor the human and improve collaborative performance when the AI model has low confidence and is incorrect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.