Abstract

In this paper, we investigate the complexity of deciding determinism of unary languages. First, we give a method to derive a set of arithmetic progressions from a regular expression E over a unary alphabet, and establish relations between numbers represented by these arithmetic progressions and words in L(E). Next, we define a problem relating to arithmetic progressions and investigate the complexity of this problem. Then by a reduction from this problem we show that deciding determinism of unary languages is coNP-complete. Finally, we extend our derivation method to expressions with counting, and prove that deciding whether an expression over a unary alphabet with counting defines a deterministic language is in Π2p. We also establish a tight upper bound for the size of the minimal DFA for expressions with counting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.