Abstract
In this paper, we introduce a new fragment of the first-order temporal language, called the monodic fragment, in which all formulas beginning with a temporal operator (Since or Until) have at most one free variable. We show that the satisfiability problem for monodic formulas in various linear time structures can be reduced to the satisfiability problem for a certain fragment of classical first-order logic. This reduction is then used to single out a number of decidable fragments of first-order temporal logics and of two-sorted first-order logics in which one sort is intended for temporal reasoning. Besides standard first-order time structures, we consider also those that have only finite first-order domains, and extend the results mentioned above to temporal logics of finite domains. We prove decidability in three different ways: using decidability of monadic second-order logic over the intended flows of time, by an explicit analysis of structures with natural numbers time, and by a composition method that builds a model from pieces in finitely many steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.