Abstract

The theorem of Huet and Lévy stating that for orthogonal rewrite systems (i) every reducible term contains a needed redex and (ii) repeated contraction of needed redexes results in a normal form if the term under consideration has a normal form, forms the basis of all results on optimal normalizing strategies for orthogonal rewrite systems. However, needed redexes are not computable in general. In the paper we show how the use of approximations and elementary tree automata techniques allows one to obtain decidable conditions in a simple and elegant way. Surprisingly, by avoiding complicated concepts like index and sequentiality we are able to cover much larger classes of rewrite systems. We also study modularity aspects of the classes in our hierarchy. It turns out that none of the classes is preserved under signature extension. By imposing various conditions we recover the preservation under signature extension. By imposing some more conditions we are able to strengthen the signature extension results to modularity for disjoint and constructor-sharing combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.