Abstract

In classical propositional logic, a theory T is prime (i.e., for every pair of formulas F,G, either T⊢F→G or T⊢G→F) iff it is complete. In Łukasiewicz infinite-valued logic the two notions split, completeness being stronger than primeness. Using toric desingularization algorithms and the fine structure of prime ideal spaces of free ℓ-groups, in this paper we shall characterize prime theories in infinite-valued logic. We will show that recursively enumerable (r.e.) prime theories over a finite number of variables are decidable, and we will exhibit an example of an undecidable r.e. prime theory over countably many variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.