Abstract

We prove that the additive structure of the ring of Laurent polynomials augmented by the predicate symbol P, where P(x) if and only if x is a power of t, is decidable. We also prove that the first-order theory of the previous structure together with the relation ∣t, where x∣ty if and only if ∃s∈Zy=x⋅ts, is undecidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.