Abstract

AbstractIn this talk we will survey several decidability and undecidability results on topological properties of self-affine or self-similar fractal tiles. Such tiles are obtained as fixed point of set equations governed by a graph. The study of their topological properties is known to be complex in general: we will illustrate this by undecidability results on tiles generated by multitape automata. In contrast, the class of self affine tiles called Rauzy fractals is particularly interesting. Such fractals provide geometrical representations of self-induced mathematical processes. They are associated to one-dimensional combinatorial substitutions (or iterated morphisms). They are somehow ubiquitous as self-replication processes appear naturally in several fields of mathematics. We will survey the main decidable topological properties of these specific Rauzy fractals and detail how the arithmetic properties of the substitution underlying the fractal construction make these properties decidable. We will end up this talk by discussing new questions arising in relation with continued fraction algorithm and fractal tiles generated by S-adic expansion systems.KeywordsProduct FamilyIterate Function SystemMarkov PartitionSturmian SequenceDiscrete PlaneThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.