Abstract

We investigate the decidability of the operation problem for T0L languages and subclasses. Fix an operation on formal languages. Given languages from the family considered (0L languages, T0L languages, or their propagating variants), is the application of this operation to the given languages still a language that belongs to the same language family? Observe, that all the Lindenmayer language families in question are anti-AFLs, that is, they are not closed under homomorphisms, inverse homomorphisms, intersection with regular languages, union, concatenation, and Kleene closure. Besides these classical operations we also consider intersection and substitution, since the language families under consideration are not closed under these operations, too. We show that for all of the above mentioned language operations, except for the Kleene closure, the corresponding operation problems of 0L and T0L languages and their propagating variants are not even semidecidable. The situation changes for unary 0L languages. In this case we prove that the operation problems with respect to Kleene star, complementation, and intersection with regular sets are decidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.