Abstract
We present decidability results for a sub-class of simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions P(x, y) and Q(u, v): The goal is to determine if two players, Alice and Bob, that observe sequences Xn and Yn respectively where {(Xi, Yi)}ni = 1 are drawn i.i.d. from P(x, y) can generate pairs U and V respectively (without communicating with each other) with a joint distribution that is arbitrarily close in total variation to Q(u, v). Even when P and Q are extremely simple: e.g., P is uniform on the triples (0, 0), (0,1), (1,0) and Q is a doubly symmetric binary source, i.e., U and V are uniform ± 1 variables with correlation say 0.49, it is open if P can simulate Q. In this work, we show that whenever P is a distribution on a finite domain and Q is a 2 × 2 distribution, then the non-interactive simulation problem is decidable: specifically, given δ > 0 the algorithm runs in time bounded by some function of P and δ and either gives a non-interactive simulation protocol that is δ-close to Q or asserts that no protocol gets O(δ)-close to Q. The main challenge to such a result is determining explicit (computable) convergence bounds on the number n of samples that need to be drawn from P(x, y) to get δ-close to Q. We invoke contemporary results from the analysis of Boolean functions such as the invariance principle and a regularity lemma to obtain such explicit bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.