Abstract

A context-free grammar (CFG) in Greibach Normal Form coincides, in another notation, with a system of guarded recursion equations in Basic Process Algebra. Hence to each CFG a process can be assigned as solution, which has as its set of finite traces the context-free language (CFL) determined by that CFG. While the equality problem for CFL's is unsolvable, the equality problem for the processes determined by CFG's turns out to be solvable. Here equality on processes is given by a model of process graphs modulo bisimulation equivalence. The proof is given by displaying a periodic structure of the process graphs determined by CFG's. As a corollary of the periodicity a short proof of the solvability of the equivalence problem for simple context-free languages is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.