Abstract

Labelled weighted transition systems (LWSs) are transition systems labelled with actions and real numbers. The numbers represent the costs of the corresponding actions in terms of resources. Recursive Weighted Logic (RWL) is a multimodal logic that expresses qualitative and quantitative properties of LWSs. It is endowed with simultaneous recursive equations, which specify the weakest properties satisfied by the recursive variables. We demonstrate that RWL is sufficiently expressive to characterize weighted-bisimilarity of LWSs. In addition, we prove that the logic is decidable, i.e., the satisfiability problem for RWL can be algorithmically solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.