Abstract

We prove several complexity and decidability results for automatic monoids: (i) there exists an automatic monoid with a P-complete word problem, (ii) there exists an automatic monoid such that the first-order theory of the corresponding Cayley-graph is not elementary decidable, and (iii) there exists an automatic monoid such that reachability in the corresponding Cayley-graph is undecidable. Moreover, we show that for every hyperbolic group the word problem belongs to LOGCFL, which improves a result of Cai [4].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.