Abstract

More than 85% of 10 mg L −1 of pentachlorophenol (PCP) was removed by magnesium/silver (206/1.47 mM) bimetal system in the presence of acetic acid. Dechlorination was found to be sequential and phenol was identified as the ultimate hydrocarbon skeleton along with some accumulation of tetra-, tri-, and dichlorophenols. The dechlorination reaction was found to follow second-order kinetics. Lower PCP removal efficiency (35%) was observed when the reaction was carried out in the absence of acid using Mg 0/Ag system. When the reaction was conducted using Mg 0 alone in the presence of acid, substantial sorption of PCP occurred with very low efficiency of PCP dechlorination. Dechlorination studies on 10 mg L −1 initial concentrations of 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and 2,4,5-trichlorophenol (2,4,5-TCP), under identical conditions as to PCP, revealed that dechlorination efficiency and reaction rate constants decrease with decreasing number of chlorine atoms on the target compound. A correlation ( R 2 > 0.9 ) between the dechlorination rate constants and E LUMO for chlorophenols was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.