Abstract

Distributed enterprise applications today are increasingly being built from services available over the web. A unit of functionality in this framework is a web service, a software application that exposes a set of "typed'' connections that can be accessed over the web using standard protocols. These units can then be composed into a <i>composite</i> web service. BPEL (Business Process Execution Language) is a high-level distributed programming language for creating composite web services. Although a BPEL program invokes services distributed over several servers, the <i>orchestration</i> of these services is typically under centralized control. Because performance and throughput are major concerns in enterprise applications, it is important to remove the inefficiencies introduced by the centralized control. In a distributed, or decentralized orchestration, the BPEL program is partitioned into independent sub-programs that interact with each other without any centralized control. Decentralization can increase parallelism and reduce the amount of network traffic required for an application. This paper presents a technique to partition a composite web service written as a single BPEL program into an equivalent set of decentralized processes. It gives a new code partitioning algorithm to partition a BPEL program represented as a program dependence graph, with the goal of minimizing communication costs and maximizing the <i>throughput</i> of multiple concurrent instances of the input program. In contrast, much of the past work on dependence-based partitioning and scheduling seeks to minimize the <i>completion time</i> of a single instance of a program running in isolation. The paper also gives a cost model to estimate the throughput of a given code partition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.