Abstract

Maintaining power system stability is becoming urgent due to the large-scale interconnection of power grids and the high penetration of uncertain renewable energy sources. The excitation control and governor control of synchronous generators have been considered as two crucial measures for enhancing the power system stability. However, a major challenge is to simultaneously achieve global asymptotic stability (GAS), voltage regulation (VR), and power regulation (PR) in the excitation and governor control. In this paper, a Lyapunov-based decentralized control (LBC) is proposed to address this challenge. The time-derivative of the Lyapunov function is designed by the feedback control of synchronous generators in order to guarantee GAS. VR and PR are ensured by considering voltage and power deviations as the feedback variables. The simulation results on the New-England ten-machine power system validate the effectiveness of the proposed LBC in improving power system transient stability and simultaneously achieving VR and PR. Although the proportional-integral- and power system stabilizer-based control can also perform VR and PR, the proposed control has much better dynamic performance and can more significantly improve the system transient stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call