Abstract
In this paper, the decentralized tracking control (DTC) problem is investigated for a class of continuous-time nonlinear systems with external disturbances. First, the DTC problem is resolved by converting it into the optimal tracking controller design for augmented tracking isolated subsystems (ATISs). %It is investigated in the form of the nominal system. A cost function with a discount is taken into consideration. Then, in the case of external disturbances, the DTC scheme is effectively constructed via adding the appropriate feedback gain to each ATIS. %Herein, we aim to obtain the optimal control strategy for minimizing the cost function with discount. In addition, utilizing the approximation property of the neural network, the critic network is constructed to solve the Hamilton-Jacobi-Isaacs equation, which can derive the optimal tracking control law and the worst disturbance law. Moreover, the updating rule is improved during the process of weight learning, which removes the requirement for initial admission control. Finally, through the interconnected spring-mass-damper system, a simulation example is given to verify the availability of the DTC scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.