Abstract
In this paper, we solve cooperative decentralized stochastic planning problems, where the interactions between agents (specified using transition and reward functions) are dependent on the number of agents (and not on the identity of the individual agents) involved in the interaction. A collision of robots in a narrow corridor, defender teams coordinating patrol activities to secure a target, etc. are examples of such anonymous interactions. Formally, we consider problems that are a subset of the well known Decentralized MDP (DEC-MDP) model, where the anonymity in interactions is specified within the joint reward and transition functions. In this paper, not only do we introduce a general model model called D-SPAIT to capture anonymity in interactions, but also provide optimization based optimal and local-optimal solutions for generalizable sub-categories of D-SPAIT.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.