Abstract
This paper develops an optimal decentralized algorithm for sparse signal recovery and demonstrates its application in monitoring localized phenomena using energy-constrained large-scale wireless sensor networks. Capitalizing on the spatial sparsity of localized phenomena, compressive data collection is enforced by turning off a fraction of sensors using a simple random node sleeping strategy, which conserves sensing energy and prolongs network lifetime. In the absence of a fusion center, sparse signal recovery via decentralized in-network processing is developed, based on a consensus optimization formulation and the alternating direction method of multipliers. In the proposed algorithm, each active sensor monitors and recovers its local region only, collaborates with its neighboring active sensors through low-power one-hop communication, and iteratively improves the local estimates until reaching the global optimum. Because each sensor monitors the local region rather than the entire large field, the iterative algorithm converges fast, in addition to being scalable in terms of transmission and computation costs. Further, through collaboration, the sensing performance is globally optimal and attains a high spatial resolution commensurate with the node density of the original network containing both active and inactive sensors. Simulations demonstrate the performance of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.