Abstract

This paper deals with modeling of complex microgrids and the design of advanced control strategies of sliding mode type to control them in a decentralized way. More specifically, the model of a microgrid including several distributed generation units (DGUs), connected according to an arbitrary complex and meshed topology, and working in islanded operation mode, is proposed. Moreover, it takes into account all the connection line parameters and it is affected by unknown load dynamics, nonlinearities and unavoidable modeling uncertainties, which make sliding mode control algorithms suitable to solve the considered control problem. Then, a decentralized second-order sliding mode control scheme, based on the suboptimal algorithm is designed for each DGU. The overall control scheme is theoretically analyzed, proving the asymptotic stability of the whole microgrid system. Simulation results confirm the effectiveness of the proposed control approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call