Abstract
An iterative synthesizing strategy for robust force reflecting control of a Haptic exploration device is proposed. The proposed strategy guarantees the robust stability of the closed loop system with respect to uncertainties caused by the robot dynamics and environmental impedance as well as time-varying communication delays. In order to achieve the stability and performance objectives of the teleoperation system through a multiobjective optimization framework, a suboptimal robust controller is obtained with guaranteed global stability. Under a decentralized structure, the proposed approach provides a systematic design framework using H∞ robust approach in the presence of interconnection in the structure. Through experimental results, the improved performance of the proposed approach is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.