Abstract
The deluge of networked data motivates the development of algorithms for computation- and communication-efficient information processing. In this context, three data-adaptive censoring strategies are introduced to considerably reduce the computation and communication overhead of decentralized recursive least-squares solvers. The first relies on alternating minimization and the stochastic Newton iteration to minimize a network-wide cost, which discards observations with small innovations. In the resultant algorithm, each node performs local data-adaptive censoring to reduce computations while exchanging its local estimate with neighbors so as to consent on a network-wide solution. The communication cost is further reduced by the second strategy, which prevents a node from transmitting its local estimate to neighbors when the innovation it induces to incoming data is minimal. In the third strategy, not only transmitting, but also receiving estimates from neighbors is prohibited when data-adaptive censoring is in effect. For all strategies, a simple criterion is provided for selecting the threshold of innovation to reach a prescribed average data reduction. The novel censoring-based (C)D-RLS algorithms are proved convergent to the optimal argument in the mean-root deviation sense. Numerical experiments validate the effectiveness of the proposed algorithms in reducing computation and communication overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.