Abstract
We consider a distributed reactive power compensation problem in a distribution network in which users locally generate reactive power using distributed generation units to contribute to the local voltage control. We model and analyze the interaction between one electric utility company and multiple users by using the Nash bargaining theory. On one hand, users determine the amount of active and reactive power generation for their distributed generation units. On the other hand, the electric utility company offers reimbursement for each user based on the amount of reactive power dispatched by that user. We first quantify the benefit for the electric utility company and users in the reactive power compensation problem. Then we derive the optimal solution for the active and reactive power generation, as well as reimbursement for each user under two different bargaining protocols, namely sequential bargaining and concurrent bargaining. Numerical results show that both the electric utility company and users benefit from the proposed decentralized reactive power compensation mechanism, and the overall system efficiency is improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.