Abstract

This article studies a class of nonsmooth decentralized multiagent optimization problems where the agents aim at minimizing a sum of local strongly-convex smooth components plus a common nonsmooth term. We propose a general primal-dual algorithmic framework that unifies many existing state-of-the-art algorithms. We establish linear convergence of the proposed method to the exact minimizer in the presence of the nonsmooth term. Moreover, for the more general class of problems with agent specific nonsmooth terms, we show that linear convergence cannot be achieved (in the worst case) for the class of algorithms that uses the gradients and the proximal mappings of the smooth and nonsmooth parts, respectively. We further provide a numerical counterexample that shows how some state-of-the-art algorithms fail to converge linearly for strongly convex objectives and different local non smooth terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.