Abstract
In this paper, a Lyapunov function-based decentralized control scheme is proposed for a single-phase parallel-connected inverters system within islanded micro-grid. With this novel method, a proper voltage regulation (e.g., amplitude and waveform quality) and excellent power and current sharing performance can be well ensured even in the presence of unknown line impedance and unbalanced LC filter parameters. In addition, high reliability and robustness can be guaranteed since no inter-communication among inverters as well as no centralized controller is demanded, which also delivers advantages of scalability and redundancy. The stability of the closed-loop system is ensured by standard Lyapunov method. The designation of the decentralized controller is simple to implement but rather effective. Detailed simulation and hardware-in-the-loop experimental results are presented to validate the feasibility of the proposed scheme under different operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.