Abstract

We address the problem of optimally controlling Connected and Automated Vehicles (CAVs) arriving from two multi-lane roads and merging at multiple points where the objective is to jointly minimize the travel time and energy consumption of each CAV subject to speed-dependent safety constraints, as well as speed and acceleration constraints. This problem was solved in prior work for two single-lane roads. A direct extension to multi-lane roads is limited by the computational complexity required to obtain an explicit optimal control solution. Instead, we propose a general framework that converts a multi-lane merging problem into a decentralized optimal control problem for each CAV in a less-conservative way. To accomplish this, we employ a joint optimal control and barrier function method to efficiently get an optimal control for each CAV with guaranteed satisfaction of all constraints. Simulation examples are included to compare the performance of the proposed framework to a baseline provided by human-driven vehicles with results showing significant improvements in both time and energy metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.